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(a) Teleoperation

(b) Autonomous Agent

Figure 1: (a) OmniH2O enables teleoperating a full-size humanoid robot (Unitree H1) to complete tasks that
require both high-precision manipulation and locomotion. (b) OmniH2O also enables full autonomy through
visual input, controlled by GPT-4o or a policy learned from teleoperated demonstrations. Videos: see our
website: https://omni.human2humanoid.com

Abstract: We present OmniH2O (Omni Human-to-Humanoid), a learning-based
system for whole-body humanoid teleoperation and autonomy. Using kinematic
pose as a universal control interface, OmniH2O enables various ways for a hu-
man to control a full-sized humanoid with dexterous hands, including using real-
time teleoperation through VR headset, verbal instruction, and RGB camera. Om-
niH2O also enables full autonomy by learning from teleoperated demonstrations
or integrating with frontier models such as GPT-4o. OmniH2O demonstrates ver-
satility and dexterity in various real-world whole-body tasks through teleoperation
or autonomy, such as playing multiple sports, moving and manipulating objects,
and interacting with humans, as shown in Figure 1. We develop an RL-based
sim-to-real pipeline, which involves large-scale retargeting and augmentation of
human motion datasets, learning a real-world deployable policy with sparse sensor
input by imitating a privileged teacher policy, and reward designs to enhance ro-
bustness and stability. We release the first humanoid whole-body control dataset,
OmniH2O-6, containing six everyday tasks, and demonstrate humanoid whole-
body skill learning from teleoperated datasets.

Keywords: Humanoid Teleoperation, Humanoid Loco-Manipulation, RL
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1 Introduction

How can we best unlock humanoid’s potential as one of the most promising physical embodiments
of general intelligence? Inspired by the recent success of pretrained vision and language models [1],
one potential answer is to collect large-scale human demonstration data in the real world and learn
humanoid skills from it. The embodiment alignment between humanoids and humans not only
makes the humanoid a potential generalist platform but also enables the seamless integration of
human cognitive skills for scalable data collections [2, 3, 4, 5].

However, whole-body control of a full-sized humanoid robot is challenging [6], with many existing
works focusing only on the lower body [7, 8, 9, 10, 11, 12, 13] or decoupled lower and upper body
control [14, 4, 15]. To simultaneously support stable dexterous manipulation and robust locomotion,
the controller must coordinate the lower and upper bodies in unison. For the humanoid teleoperation
interface [2], the need for expensive setups such as motion captures and exoskeletons also hinders
large-scale humanoid data collection. In short, we need a robust control policy that supports whole-
body dexterous loco-manipulation, while seamlessly integrating with easy-to-use and accessible
teleoperation interfaces (e.g., VR) to enable scalable demonstration data collection.

In this work, we propose OmniH2O, a learning-based system for whole-body humanoid teleoper-
ation and autonomy. We propose a pipeline to train a robust whole-body motion imitation policy
via teach-student distillation and identify key factors in obtaining a stable control policy that sup-
ports dexterous manipulation. For instance, we find these elements to be essential: motion data
distribution, reward designs, and state space design and history utilization. The distribution of the
motion imitation dataset needs to be biased toward standing and squatting to help the policy learn to
stabilize the lower body during manipulation. Regularization rewards are used to shape the desired
motion but need to be applied with a curriculum. The input history could replace the global linear
velocity, an essential input in previous work [3] that requires Motion Capture (MoCap) to obtain.
We also carefully design our control interface and choose the kinematic pose as an intermediate
representation to bridge between human instructions and humanoid actuation. This interface makes
our control framework compatible with many real-world input sources, such as VR, RGB cameras,
and autonomous agents (GPT-4o). Powered by our robust control policy, we demonstrate teleop-
erating humanoids to perform various daily tasks (racket swinging, flower watering, brush writing,
squatting and picking, boxing, basket delivery, etc.), as shown in Figure 1. Through teleoperation,
we collect a dataset of our humanoid completing six tasks such as hammer catching, basket picking,
etc., annotated with paired first-person RGBD camera views, control input, and whole-body motor
actions. Based on the dataset, we showcase training autonomous policies via imitation learning.

In conclusion, our contributions are as follows: (1) We propose a pipeline to train a robust humanoid
control policy that supports whole-body dexterous loco-manipulation with a universal interface that
enables versatile human control and autonomy. (2) Experiments of large-scale motion tracking in
simulation and the real world validate the superior motion imitation capability of OmniH2O. (3) We
contribute the first humanoid loco-manipulation dataset and evaluate imitation learning methods on
it to demonstrate humanoid whole-body skill learning from teleoperated datasets.

2 Related Works

Learning-based Humanoid Control. Controlling humanoid robots is a long-standing robotic prob-
lem due to their high degree-of-freedom (DoF) and lack of self-stabilization [16, 17]. Recently,
learning-based methods have shown promising results [7, 8, 9, 10, 11, 12, 13, 3, 18]. However, most
studies [7, 8, 9, 10, 11, 12, 13] focus mainly on learning robust locomotion policies and do not fully
unlock all the abilities of humanoids. For tasks that require whole-body loco-manipulation, the lower
body must serve as the support for versatile and precise upper body movement [19]. Traditional goal-
reaching [20, 21] or velocity-tracking objectives [18] used in legged locomotion are incompatible
with such requirements because these objectives require additional task-specific lower-body goals
(from other policies) to indirectly account for upper-lower-body coordination. OmniH2O instead
learns an end-to-end whole-body policy to coordinate upper and lower bodies.
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Humanoid Teleoperation. Teleoperating humanoids holds great potential in unlocking the full
capabilities of the humanoid system. Prior efforts in humanoid teleoperation have used task-
space control [4, 22], upper-body-retargeted teleoperation [23, 24] and whole-body teleopera-
tion [25, 26, 27, 28, 29, 30, 3, 4]. Recently, H2O [3] presents an RL-based whole-body teleoperation
framework that uses a third-person RGB camera to obtain full-body keypoints of the human teleop-
erator. However, due to the delay and inaccuracy of RGB-based pose estimation and the requirement
for global linear velocity estimation, H2O [3] requires MoCap during test time, only supports sim-
ple mobility tasks, and lacks the precision for dexterous manipulation tasks. By contrast, OmniH2O
enables high-precision dexterous loco-manipulation indoors and in the wild.

Whole-body Humanoid Control Interfaces. To control a full-sized humanoid, many interfaces
such as exoskeleton [31], MoCap [32, 33], and VR [34, 35] are proposed. Recently, VR-based
humanoid control [36, 37, 38, 39] has been drawing attention in the graphics community due to its
ability to create whole-body motion using sparse input. However, these VR-based works only focus
on humanoid control for animation and do not support mobile manipulation. OmniH2O, on the other
hand, can control a real humanoid robot to complete real-world manipulation tasks.

Open-sourced Robotic Dataset and Imitation Learning. One major challenge within the robotics
community is the limited number of publicly available datasets compared to those for language and
vision tasks [40]. Recent efforts [40, 41, 42, 43, 44, 45, 46, 47] have focused on collecting robotic
data using various embodiments for different tasks. However, most of these datasets are collected
with fixed-base robotic arm platforms. Even one of the most comprehensive datasets to date, Open
X-Embodiment [40], does not include data for humanoids. To the best of our knowledge, we are the
first to release a dataset for full-sized humanoid whole-body loco-manipulation.

3 Universal and Dexterous Human-to-Humanoid Whole-Body Control

In this section, we describe our whole-body control system to support teleoperation, dexterous ma-
nipulation, and data collection. As simulation has access to inputs that are hard to obtain from
real-world devices, we opt to use a teacher-student framework. We also provide details about key
elements to obtain a stable and robust control policy: dataset balance, reward designs, etc.

Problem Formulation. We formulate the learning problem as goal-conditioned RL for a Markov
Decision Process (MDP) defined by the tuple M = ⟨S,A, T ,R, γ⟩ of state S, action at ∈ A,
transition T , reward function R, and discount factor γ. The state st contains the proprioception sp

t

and the goal state sg
t . The goal state sg

t includes the motion goals from the human teleoperator or
autonomous agents. Based on proprioception sp

t , goal state sg
t , and action at, we define the reward

rt = R
(
sp
t , s

g
t ,at

)
. The action at specifies the target joint angles and a PD controller actuates

the motors. We apply the Proximal Policy Optimization algorithm (PPO) [48] to maximize the
cumulative discounted reward E

[∑T
t=1 γ

t−1rt

]
. In this work, we study the motion imitation task

where our policy πOmniH2O is trained to track real-time motion input as shown in Figure 3. This task
provides a universal interface for humanoid control as the kinematic pose can be provided by many
different sources. We define kinematic pose as qt ≜ (θt,pt), consisting of 3D joint rotations θt

and positions pt of all joints on the humanoid. To define velocities q̇1:T , we have q̇t ≜ (ωt,vt)
as angular ωt and linear velocities vt. As a notation convention, we use ·̃ to represent kinematic
quantities from VR headset or pose generators, ·̂ to denote ground truth quantities from MoCap
datasets, and normal symbols without accents for values from the physics simulation or real robot.

(a) (b) (c) (d)

Figure 2: (a) Source motion; (b) Retar-
geted motion; (c) Standing variant; (d)
Squatting variant.

Human Motion Retargeting. We train our motion imitation
policy using retargeted motions from the AMASS [49] dataset,
using a similar retargeting process as H2O [3]. One major
drawback of H2O is that the humanoid tends to take small ad-
justment steps instead of standing still. In order to enhance
the ability of stable standing and squatting, we bias our train-
ing data by adding sequences that contain fixed lower body
motion. Specifically, for each motion sequence q̂1:T from our
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Figure 3: (a) OmniH2O retargets large-scale human motions and filters out infeasible motions for humanoids.
(b) Our sim-to-real policy is distilled through supervised learning from an RL-trained teacher policy using
privileged information. (c) The universal design of OmniH2O supports versatile human control interfaces
including VR headset, RGB camera, language, etc. Our system also supports to be controlled by autonomous
agents like GPT-4o or imitation learning policy trained using our dataset collected via teleoperation.

dataset, we create a “stable” version q̂stable
1:T by fixing the root position and the lower body to a stand-

ing or squatting position as shown in Fig. 2. We provide ablation of this strategy in Appendix H.

Reward and Domain Randomization. To train πprivileged that is suitable as a teacher for a real-world
deployable student policy, we employ both imitation rewards and regularization rewards. Previous
work [18, 3] often uses regularization rewards like feet air time or feet height to shape the lower-
body motions. However, these rewards result in the humanoid stomping to keep balanced instead
of standing still. To encourage standing still and taking large steps during locomotion, we propose
a key reward function max feet height for each step. We find that this reward, when applied with
a carefully designed curriculum, effectively helps RL decide when to stand or walk. We provide a
detailed overview of rewards, curriculum design, and domain randomization in Appendices E and F.

Teacher: Privileged Imitation Policy. During real-world teleoperation of a humanoid robot, much
information that is accessible in simulation (e.g., the global linear/angular velocity of every body
link) is not available. Moreover, the input to a teleoperation system could be sparse (e.g., for VR-
based teleoperation, only the hands and head’s poses are known), which makes the RL optimization
challenging. To tackle this issue, We first train a teacher policy that uses privileged state information
and then distill it to a student policy with limited state space. Having access to the privileged state can
help RL find more optimal solutions, as shown in prior works [50] and our experiments ( Section 4).
Formally, we train a privileged motion imitator πprivileged(at|sp-privileged

t , sg-privileged
t ), as described

in Figure 3. The proprioception is defined as sp-privileged
t ≜ [pt,θt, q̇t,ωt,at−1], which contains

the humanoid rigidbody position pt, orientation θt, linear velocity q̇t, angular velocity ωt, and the
previous action at−1. The goal state is defined as sg-privileged

t ≜ [θ̂t+1⊖θt, p̂t+1−pt, v̂t+1−vt, ω̂t−
ωt, θ̂t+1, p̂t+1], which contains the reference pose (θ̂t, p̂t) and one-frame difference between the
reference and current state for all rigid bodies of the humanoid.

Student: Sim-to-Real Imitation Policy with History. We design our control policy to be compat-
ible with many input sources by using the kinematic reference motion as the intermediate represen-
tation. As estimating full-body motion q̃t (both rotation and translation) is difficult (especially from
VR headsets), we opt to control our humanoid with position p̃t only for teleoperation. Specifically,
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for real-world teleoperation, the goal state is sg-real
t ≜ (p̃real

t −preal
t , ṽreal

t −vreal
t , p̃real

t ). The superscript
real indicates using the 3-points available (head and hands) from the VR headset. For other control in-
terfaces (e.g., RGB, language), we use the same input 3-point input to maintain consistency, though
can be easily extended to more keypoints to alleviate ambiguity. For proprioception, the student
policy sp-real

t ≜ (dt−25:t, ḋt−25:t,ω
root
t−25:t, gt−25:t,at−25−1:t−1) uses values easily accessible in the

real-world, which includes 25-step history of joint (DoF) position dt−25:t, joint velocity ḋt−25:t,
root angular velocity ωroot

t−25:t, root gravity gt−25:t, and previous actions at−25−1:t−1. The inclu-
sion of history data helps improve the robustness of the policy with our teacher-student supervised
learning. Note that no global linear velocity vt information is included in our observations and the
policy implicitly learns velocity using history information. This removes the need for MoCap as in
H2O [3] and further enhances the feasibility of in-the-wild deployment.

Policy Distillation. We train our deployable teleoperation policy πOmniH2O follow-
ing the DAgger [51] framework: for each episode, we roll out the student policy
πOmniH2O(at|sp-real

t , sg-real
t ) in simulation to obtain trajectories of (sp-real

1:T , sg-real
1:T ). Using the ref-

erence pose q̂1:T and simulated humanoid states sp
1:T , we can compute the privileged states

sg-privileged
t , sp-privileged

t ← (sp
t , q̂t+1). Then, using the pair (sp-privileged

t , sg-privileged
t ), we query the

teacher πprivileged(at
privileged|sp-privileged

t , sg-privileged
t ) to calculate the reference action at

privileged. To
update πOmniH2O, the loss is: L = ∥at

privileged − at∥22.

Dexterous Hands Control. As shown in Figure 3(c), we use the hand poses estimated by VR [52,
53], and directly compute joint targets based on inverse kinematics for an off-the-shelf low-level
hand controller. We use VR for the dexterous hand control in this work, but the hand pose estimation
could be replaced by other interfaces (e.g., MoCap gloves [54] or RGB cameras [55]) as well.

4 Experimental Results

In our experiments, we aim to answer the following questions. Q1. (Section 4.1) Can OmniH2O
accurately track motion in simulation and real world? Q2. (Section 4.2) Does OmniH2O support
versatile control interfaces in the real world and unlock new capabilities of loco-manipulation? Q3.
(Section 4.3) Can we use OmniH2O to collect data and learn autonomous agents from teleoperated
demonstrations? As motion is best seen in videos, we provide visual evaluations in our website.

4.1 Whole-body Motion Tracking

Experiment Setup. To answer Q1, we evaluate OmniH2O on motion tracking in simulation (Sec-
tion 4.1.1) and the real world (Section 4.1.1). In simulation, we evaluate on the retargeted AMASS
dataset with augmented motions Q̂ (14k sequences); in real-world, we test on 20 standing sequences
due to the limited physical lab space and the difficulty of evaluating on large-scale datasets in the
real world. Detailed state-space composition (Appendix C), ablation setup (Appendix B), hyperpa-
rameters (Appendix K), and hardware configuration (Appendix A) are summarized in the Appendix.
Metrics. We evaluate the motion tracking performance using both pose and physics-based met-
rics. We report Success rate (Succ) as in PHC [56], where imitation is unsuccessful if the average
deviation from reference is farther than 0.5m at any point in time. Succ measures whether the hu-
manoid can track the reference motion without losing balance or lagging behind. The global MPJPE
Eg−mpjpe and the root-relative mean per-joint position error (MPJPE) Empjpe (in mm) measures our
policy’s ability to imitate the reference motion globally and locally (root-relative). To show physical
realism, we report average joint acceleration Eacc (mm/frame2) and velocity Evel (mm/frame) error.

4.1.1 Simulation Motion-Tracking Results
In Table 1’s first three rows, we can see that our deployable student policy significantly improves
upon prior art [3] on motion imitation and achieves a similar success rate as the teacher policy.

Ablation on DAgger/RL. We test the performance of OmniH2O without DAgger (i.e., directly
using RL to train the student policy). In Table 1(a) we can see that DAgger improves performance
overall, especially for policy with history input. Without DAgger the policy struggles to learn a
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Table 1: Simulation motion imitation evaluation of OmniH2O and baselines on dataset Q̂.
All sequences Successful sequences

Method State Dimension Sim2Real Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓
Privileged policy S ⊂ R913 ✗ 94.77% 126.51 70.68 3.57 6.20 122.71 69.06 2.22 5.20

H2O [3] S ⊂ R138 ✓ 87.52% 148.13 81.06 5.12 7.89 133.28 75.99 2.40 5.75
OmniH2O S ⊂ R1665 ✓ 94.10% 141.11 77.82 3.70 6.54 135.49 75.75 2.30 5.47
(a) Ablation on DAgger/RL
OmniH2O-w/o-DAgger-History0 S ⊂ R90 ✗ 90.62% 163.44 91.29 5.12 8.80 153.31 87.59 3.15 7.27
OmniH2O-w/o-DAgger S ⊂ R1665 ✗ 47.11% 223.27 128.90 15.03 16.29 182.13 119.54 5.47 9.10
OmniH2O-History0 S ⊂ R90 ✓ 93.80% 141.21 78.52 3.74 6.62 134.90 76.11 2.25 5.48
OmniH2O S ⊂ R1665 ✓ 94.10% 141.11 77.82 3.70 6.54 135.49 75.75 2.30 5.47
(b) Ablation on History steps/Architecture
OmniH2O-History50 S ⊂ R3240 ✓ 93.56% 141.51 78.51 4.01 6.79 135.04 76.07 2.36 5.55
OmniH2O-History5 S ⊂ R405 ✓ 93.60% 139.23 77.82 3.91 6.66 132.67 75.33 2.24 5.41
OmniH2O-History0 S ⊂ R90 ✓ 93.80% 141.21 78.52 3.74 6.62 134.90 76.11 2.25 5.48
OmniH2O-GRU S ⊂ R90 ✓ 92.85% 147.67 80.84 4.05 6.93 142.75 79.10 2.38 5.66
OmniH2O-LSTM S ⊂ R90 ✓ 91.03% 147.36 80.34 4.12 7.04 142.64 78.59 2.37 5.72
OmniH2O-History25 (Ours) S ⊂ R1665 ✓ 94.10% 141.11 77.82 3.70 6.54 135.49 75.75 2.30 5.47
(c) Ablation on Tracking Points
OmniH2O-22points S ⊂ R1836 ✓ 94.72% 127.71 70.39 3.62 6.25 123.87 68.92 2.22 5.24
OmniH2O-8points S ⊂ R1710 ✓ 94.31% 129.30 71.70 3.78 6.39 125.14 70.07 2.22 5.26
OmniH2O-3points (Ours) S ⊂ R1665 ✓ 94.10% 141.11 77.82 3.70 6.54 135.49 75.75 2.30 5.47
(d) Ablation on Linear Velocity
OmniH2O-w-linvel S ⊂ R1743 ✓ 93.80% 138.18 78.12 3.94 6.61 132.44 75.98 2.29 5.40
OmniH2O S ⊂ R1665 ✓ 94.10% 141.11 77.82 3.70 6.54 135.49 75.75 2.30 5.47

coherent policy when provided with a long history. This is due to RL being unable to handle the
exponential growth in input complexity. However, the history information is necessary for learning
a deployable policy in the real-world, providing robustness and implicit global velocity information
(see Section 4.1.2). Supervised learning via DAgger is able to effectively leverage the history input
and is able to achieve better performance.

Ablation on History Steps/Architecture. In Table 1(b), we experiment with varying history steps
(0, 5, 25, 50) and find that 25 steps achieve the best balance between performance and learning
efficiency. Additionally, we evaluate different neural network architectures for history utilization:
MLP, LSTM, GRU and determine that MLP-based OmniH2O performs the best.

Ablation on Sparse Input. To support VR-based teleoperation, πOmniH2O only tracks 3-points (head
and hands) to produce whole-body motion. The impact of the number of tracking points is examined
in Table 1(c). We test configurations ranging from minimal (3) to full-body motion goal (22) and
found that 3-point tracking can achieve comparable performance with more input keypoints. As
expected, 3-point policy sacrifices some whole-body motion tracking accuracy but gains greater
applicability to commercially available devices.
Ablation on Global Linear Velocity. Given the challenges associated with global velocity esti-
mation in real-world applications, we compare policies trained with and without explicit velocity
information. In Table 1(d), we find that linear velocity information does not boost performance
in simulation, but it introduces significant challenges in real-world deployment (details illustrated
in Section 4.1.2), prompting us to develop a policy with state spaces that do not depend on linear
velocity as proprioception to avoid these issues.

4.1.2 Real-world Motion-Tracking Results

Table 2: Real-world motion tracking evaluation on 20
standing motions in Q̂

Tested sequences
Method State Dimensions Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓
H2O [3] S ⊂ R138 87.33 53.32 6.03 5.87
OmniH2O S ⊂ R1665 47.94 41.87 1.84 2.20
(a) Ablation on Real-world Linear Velocity estimation
OmniH2O-w-linvel(VIO)1,2S ⊂ R1743 N/A N/A N/A N/A
OmniH2O-w-linvel(MLP) S ⊂ R1743 50.93 42.47 2.16 2.26
OmniH2O-w-linvel(GRU) S ⊂ R1743 49.75 42.38 2.20 2.31
OmniH2O S ⊂ R1665 47.94 41.87 1.84 2.20
(b) Ablation on History steps/Architecture
OmniH2O-History0 S ⊂ R90 83.26 46.00 4.86 4.45
OmniH2O-History5 S ⊂ R405 62.18 46.50 2.66 2.90
OmniH2O-History50 S ⊂ R3240 50.24 40.11 2.37 2.71
OmniH2O-LSTM S ⊂ R90 87.00 46.06 3.89 3.88
OmniH2O S ⊂ R1665 47.94 41.87 1.84 2.20

1 Use ZED SDK to estimate the linear velocity.
2 Unable to finish the real-world test due to falling on the ground.

Ablation on Real-world Linear Velocity Esti-
mation. We exclude linear velocity in our state
space design global linear velocity obtained
by algorithms such as visual inertial odome-
try (VIO) can be rather noisy, as shown in Ap-
pendix G. Our ablation study (Table 2(a)) also
shows that policies without velocity input has
better performance compared with policies us-
ing velocities estimated by VIO or MLP/GRU
neural estimators (implementation details in
Appendix G), which suggests that the policy
with history can effectively track motions without explicit linear velocity as input.
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“Wave your left hand” “Wave your right hand” “Could you do a T-Pose” “Could you hug yourself” “Walk forward 0.5m” “Turn to the right”

Figure 4: OmniH2O policy tracks motion goals from a language-based human motion generative model [57].
(a) Disturbances (b) Outdoor Terrains

Figure 5: OmniH2O shows superior robustness against human strikes and different outdoor terrains.
History Steps and Architecture. Real-world evaluation in Table 2(b) also shows that our choice of
25 steps of history achieves the best performance. The tracking performance of LSTM shows that
MLP-based policy performs better in the real-world.

4.2 Human Control via Universal Interfaces

To answer Q2, we demonstrate real-world capabilities of OmniH2O with versatile human control
interfaces. All the capabilities discussed below utilize the same motion-tracking policy πOmniH2O.
Teleoperation. We teleoperate the humanoid using πOmniH2O with both VR and RGB camera as
interfaces. The results are shown in Figure 1(a) and Appendix I, where the robot is able to finish
dexterous loco-manipulation tasks with high precision and robustness.
Language Instruction Control. By linking πOmniH2O with a pretrained text to motion generative
model (MDM) [57], it enables controlling the humanoid via verbal instructions. As shown in Fig-
ure 4, with humans describing desired motions, such as “raise your right hand”. MDM generates
the corresponding motion goals that are tracked by the OmniH2O.
Robustness Test. As shown in Figure 5, we test the robustness of our control policy. We use the
same policy πOmniH2O across all tests, whether with fixed standing motion goals or motion goals
controlled by joysticks, either moving forward or backward. With human punching and kicking
from various angles, the robot, without external assistance, is able to maintain stability on its own.
We also test OmniH2O on various outdoor terrains, including grass, slopes, gravel, etc. OmniH2O
demonstrates great robustness under disturbances and unstructured terrains.

4.3 Autonomy via Frontier Models or Imitation Learning

To answer Q3, we need to bridge the whole-body tracking policy (physical intelligence), with au-
tomated generation of kinematic motion goals through visual input (semantic intelligence). We
explore two ways of automating humanoid control with OmniH2O: (1) using multi-modal frontier
models to generate motion goals and (2) learning autonomous policies from the teleoperated dataset.

GPT-4o Autonomous Control. We integrate our system, OmniH2O, with GPT-4o, utilizing a head-
mounted camera on the humanoid to capture images for GPT-4o (Figure 6). The prompt (details in
Appendix M) provided to GPT-4o offers several motion primitives for it to choose from, based on
the current visual context. We opt for motion primitives rather than directly generating motion goals
because of GPT-4o’s relatively long response time. As shown in Figure 6, the robot manages to
give the correct punch based on the color of the target and successfully greets a human based on the
intention indicated by human poses.
OmniH2O-6 Dataset. We collect demonstration data via VR-based teleoperation. We consider
six tasks: Catch-Release, Squat, Rope-Paper-Scissors, Hammer-Catch, Boxing, and Pasket-Pick-
Place. Our dataset includes paired RGBD images from the head-mounted camera, the motion goals
of H1’s head and hands with respect to the root, and joint targets for motor actuation, recorded at
30Hz. For simple tasks such as Catch-Release, Squat, and Rope-Paper-Scissors, approximately 5
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(a) Autonomous Boxing (b) Autonomous Greetings with Human

Figure 6: OmniH2O sends egocentric RGB views to GPT-4o and executes the selected motion primitives.
(d) Rock-Paper-Scissors(b) Squat(a) Catch-Release (c) Hammer-Catch

(a) Catch-Release

Figure 7: OmniH2O autonomously conducts four tasks using LfD models trained with our collected data.

minutes of data are recorded, and for tasks like Hammer-Catch and Basket-Pick-Place, we collect
approximately 10 minutes, leading to 40-min real-world humanoid teleoperated demonstrations in
total. Detailed task descriptions of the six open-sourced datasets are in Appendix J.

Table 3: Quantitative LfD average per-
formance on 4 tasks over 10 runs.

Metrics All Tasks

(a) Ablation on Data size
25%data 50%data 100%data

MSE Loss 1.30E-2 7.48E-3 5.25E-4
Succ rate 4/10 6.5/10 8/10

(b) Ablation on Sequence observation/action
Si-O-Si-A Se-O-Se-A Si-O-Se-A

MSE Loss 4.89E-4 9.91E-4 5.25E-4
Succ rate 6.5/10 8.75/10 8/10

(c) Ablation on BC/DDIM/DDPM
BC DP-DDIM DP-DDPM

MSE Loss 5.63E-3 1.9E-3 5.25E-4
Succ rate 1/10 7.75/10 8/10

Humanoid Learning from Demonstrations. We design our
learning from demonstration policy to be πLfD(p̂

Sparse-lfd
t:t+ϕ |It),

where πLfD outputs ϕ frames of motion goals given the im-
age input It. Here, we also include dexterous hand commands
in p̂Sparse-lfd

t:t+ϕ . Then, our πOmniH2O(at|sp-real
t , sg-real

t ) serves as
the low-level policy to compute joint actuations for humanoid
whole-body control. The training hyperparameters are in
Appendix L. Compared to directly using the πLfD to out-
put joint actuation, we leverage the trained motor skills in
πOmniH2O, which drastically reduces the number of demonstra-
tions needed. We benchmark a variety of imitation learning
algorithms on four tasks in our collected dataset (shown in
Figure 7), including Diffusion Policy [58] with Denoising Dif-
fusion Probabilistic Model [59] (DP-DDPM) and Denoising Diffusion Implicit Model [60] (DP-
DDIM) and vanilla Behavior Cloning with a ResNet architecture (BC). Detailed descriptions of
these methods are provided in Appendix D. To evaluate πLfD, we report the average MSE loss and
the success rate in Table 3, where we average the metrics across all tasks. More details for each
task evaluation can be found in Appendix J. We draw two key conclusions: (1) The Diffusion Policy
significantly outperforms vanilla BC with ResNet; (2) In our LfD training, predicting a sequence of
actions is crucial, as it enables the robot to effectively learn and replicate the trajectory.

5 Limitations and Future Work

Summary. OmniH2O enables dexterous whole-body humanoid loco-manipulation via teleopera-
tion, designs universal control interfaces, facilitates scalable demonstration collection, and empow-
ers humanoid autonomy via frontier models or humanoid learning from demonstrations.

Limitations. One limitation of our system is the requirement of robot root odometry to transfer
pose estimation from teleoperation interfaces to motion goals in the robot frame. Results from
VIO can be noisy or even discontinuous, causing the motion goals to deviate from desired control.
Another limitation is safety; although the OmniH2O policy has shown great robustness, we do not
have guarantees or safety checks for extreme disturbances or out-of-distribution motion goals (e.g.,
large discontinuity in motion goals). Future work could also focus on the design of the teleoperation
system to allow the humanoid to traverse stairs with only sparse upper-body motion goals. Another
interesting direction is improving humanoid learning from demonstrations by incorporating more
sensors (e.g., LiDAR, wrist cameras, tactile sensors) and better learning algorithms. We hope that
our work spurs further efforts toward robust and scalable humanoid teleoperation and learning.
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Appendix

More real-world experiment videos are at the website https://omni.human2humanoid.com.

A Real Robot System Setup

Our real robot employs a Unitree H1 platform [61], outfitted with Damiao DM-J4310-2EC mo-
tors [62] and Inspire hands [63] for its manipulative capabilities. We have two versions of real robot
computing setup. (1) The first one has two 16GB Orin NX computers mounted on the back of the H1
robot. The first Orin NX is connected to a ZED camera mounted on the waist of H1, which performs
computations to determine H1’s own location for positioning. The camera operates at 60 Hz FPS.
Additionally, this Orin NX connects via Wi-Fi to our Vision Pro device to continuously receive mo-
tion goal information from a human operator. The second Orin NX serves as our main control hub. It
receives the motion goal information, which it uses as input for our control policy. This policy then
outputs torque information for each of the robot’s motors and sends these commands to the robot.
As control for the robot’s fingers and wrists does not require inference, it is directly mapped from
the Vision Pro data to the corresponding joints on the robot. The policy’s computation frequency
is set at 50 Hz. The two Orin NX units are connected via Ethernet, sharing information through a
common ROS (Robot Operating System) network. The final commands to H1 are consolidated and
dispatched by the second Orin NX. Our entire system has a low latency of only 20 milliseconds.
It’s worth noting that we designed the system in this way partly because the ZED camera requires

14

https://omni.human2humanoid.com


substantial computational resources. By dedicating the first Orin NX to the ZED camera, and the
second to policy inference, we ensure that each component operates with optimal performance. (2)
In the second setup, a laptop (13th Gen i9-13900HX and NVIDIA RTX4090, 32GB RAM) serves as
the computing and communication device. All devices, including the ZED camera, control policy,
and Vision Pro, communicate through this laptop on its ROS system, facilitating centralized data
handling and command dispatch. These two setups yield similar performance, and we use them
interchangeably in our experiments.

B Simulation Baseline and Ablations

In this section, we provide an explanation of each ablation method. Main results in Table 1

• Privileged policy: This teacher policy πprivileged incorporates all privileged environment
information, along with complete motion goal and proprioception data in the observations.
State space composition details in Table 4.

• H2O: A policy trained using RL without DAgger and historical data, utilizing 8 keypoints
of motion goal in observations. State space composition details in Table 5.

• OmniH2O: Our deployment policy πOmniH2O that includes historical information and uses
3 keypoints of motion goal in observations, trained with DAgger. State space composition
details in Table 6.

Ablation on DAgger/RL in Table 1(a)

• OmniH2O-w/o-DAgger-History0: This variant of OmniH2O is trained solely using RL
and does not incorporate historical information within observations. State space composi-
tion details in Table 7.

• OmniH2O-w/o-DAgger: This model is trained using RL, excludes DAgger, but includes
historical information from the last 25 steps in observations. State space composition de-
tails in Table 8.

• OmniH2O-History0: This model is trained with DAgger, but excludes historical informa-
tion from the last 25 steps in observations. State space composition details in Table 9.

• OmniH2O: This model is trained with DAgger and incorporates 25-step historical infor-
mation within observations. State space composition details in Table 6.

Ablation on History steps/Architecture in Table 1(b)

• OmniH2O-History50/25/5/0: This variant of the OmniH2O with 50, 25, or 0 steps of
historical information in the observations. State space composition details in Table 10.

• OmniH2O-GRU/LSTM: This version replaces the MLP in the policy network with either
GRU or LSTM, inherently incorporating historical observations. State space composition
details in Table 11.

Ablation on Tracking Points in Table 1(c)

• OmniH2O-22/8/3points: This variant of the OmniH2O policy includes 22, 8, or 3 key-
points of motion goal in the observations, with the 3 keypoints setting corresponding to the
standard OmniH2O policy. State space composition details in Tables 6, 12 and 13.

Ablation on Linear Velocity in Table 1(d)

• OmniH2O-w-linvel: This variant is almost the same as OmniH2O but with root linear
velocity in observations and past linear velocity in history information. State space com-
position details in Table 14.
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C State Space Compositions

In this section, we introduce the detailed state space composition of baselines in the experiments.

Privileged Policy. This policy πprivileged is the teacher policy that has access to all the available states
for motion imitation, trained using RL.

Table 4: State space information in Privileged Policy setting
State term Dimensions

Motion goal DoF position 66
Motion goal DoF rotation 138
Motion goal DoF velocity 69

Motion goal DoF angular velocity 69
DoF position difference 69
DoF rotation difference 138
DoF velocity difference 69

DoF angular velocity difference 69
Local DoF position 69
Local DoF rotation 138

Actions 19
Total dim 913

H2O. This policy has 8 keypoints input (shoulder, elbow, hand, leg) and with global linear velocity,
trained using RL.

Table 5: State space information in H2O setting
State term Dimensions

DoF position 19
DoF velocity 19
Base velocity 3

Base angular velocity 3
Base gravity 3
Motion goal 72

Actions 19
Total dim 138

OmniH2O. This is our deployment policy πOmniH2O with 25 history steps and without global linear
velocity, trained using DAgger.
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Table 6: State space information in OmniH2O setting
State term Dimensions

DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Single step total dim 90

History state term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 63

Total dim 1665(63*25 + 90)

OmniH2O-w/o-DAgger-History0. This policy has a history of 0 steps, trained using RL.

Table 7: State space information in OmniH2O-w/o-DAgger-History0 setting
State term Dimensions

DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Total dim 90

OmniH2O-w/o-DAgger. This policy has the same architecture as OmniH2O but trained with RL.

Table 8: State space information in OmniH2O-w/o-DAgger setting
State term Dimensions

DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Single step total dim 90

History state term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 63

Total dim 1665(63*25 + 90)

OmniH2O-History0. This policy has a history of 0 steps, trained using DAgger.
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Table 9: State space information in OmniH2O-History0 setting
State term Dimensions

DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Total dim 90

OmniH2O-Historyx. This policy has a history of x steps, trained using DAgger.

Table 10: State space information in OmniH2O-Historyx setting
State term Dimensions

DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Single step total dim 90

History state term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 63

Total dim 63*x + 90

OmniH2O-GRU/LSTM. This policy uses GRU/LSTM-based architecture, trained using DAgger.

Table 11: State space information in OmniH2O-GRU/LSTM setting
State term Dimensions

DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Total dim 90

OmniH2O-22points. This policy has 22 keypoints input (every joint on the humanoid), trained
using DAgger.
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Table 12: State space information in OmniH2O-22points setting
State term Dimensions

DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 198

Actions 19
Single step total dim 261

History state term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 63

Total dim 1836(63*25+261 )

OmniH2O-8points. This policy has 8 keypoints input (shoulder, elbow, hand, leg), trained using
DAgger.

Table 13: State space information in OmniH2O-8points setting
State term Dimensions

DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 72

Actions 19
Single step total dim 135

History state term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 63

Total dim 1710(63*25+135 )

OmniH2O-w-linvel. This policy has 25 history steps and global linear velocity, trained using DAg-
ger.
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Table 14: State space information in OmniH2O-w-linvel setting
State term Dimensions

DoF position 19
DoF velocity 19
Base velocity 3

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Single step total dim 93

History state term Dimensions
DoF position 19
DoF velocity 19
Base velocity 3

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 66

Total dim 1743(66*25 + 93)

D LfD Baselines

We conduct numerous ablation studies on LfD, aiming to benchmark the impact of various aspects
on LfD tasks. The details of each ablation are as follows:

Ablation on Dataset size.

• 25/50/100% data: In this task, we use 25/50/100% of the dataset as the training set. The
algorithm is DDPM which takes a single-step image as input and outputs 8 steps of actions.

Ablation on Single/Sequence observation/action input/output.

• Si-O-Si-A: Single-step observation and single-step action mean that we take 1 step of image
data as input and predict 1 step of action as output.

• Se-O-Se-A: Sequence-steps observation and sequence-steps actions mean that we take 4
steps of image data as input and predict 8 steps of action as output.

• Si-O-Se-A: Single-step observation and sequence-steps actions mean that we take 1 step of
image data as input and predict 8 steps of action as output.

Ablation on Training Architecture..

• BC: Behavior cloning which means we use resnet+MLP to predict the next 8 steps action
from the current step’s image.

• DP-DDIM: We use DDIM as the algorithm which takes a single-step image as input and
outputs 8 steps of actions.

• DP-DDPM: We use DDPM as the algorithm which takes a single-step image as input and
outputs 8 steps of actions.

E Reward Functions

Reward Components. Detailed reward components are summarized in Table 15.
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Table 15: Reward components and weights: penalty rewards for preventing undesired behaviors for sim-to-real
transfer, regularization to refine motion, and task reward to achieve successful whole-body tracking in real-time.

Term Expression Weight
Penalty

Torque limits 1(τ t /∈ [τmin, τmax]) -2
DoF position limits 1(dt /∈ [qmin, qmax]) -125
DoF velocity limits 1(ḋt /∈ [q̇min, q̇max]) -50

Termination 1termination -250
Regularization

DoF acceleration ∥d̈t∥E2 -0.000011
DoF velocity ∥ḋt∥22 -0.004

Lower-body action rate ∥alower
t − alower

t−1 ∥22 -3
Upper-body action rate ∥aupper

t − aupper
t−1 ∥22 -0.625

Torque ∥τ t∥ -0.0001
Feet air time Tair − 0.25 [64] 1000

Max feet height for each step max{hmax feet height for each step − 0.25, 0} 1000
Feet contact force ∥Ffeet∥22 -0.75

Stumble 1(F xy
feet > 5× F z

feet) -0.00125
Slippage ∥vt

feet∥22 × 1(Ffeet ≥ 1) -37.5
Feet orientation ∥gfeet

z ∥ -62.5
In the air 1(F left

feet, F
right
feet < 1) -200

Orientation ∥groot
z ∥ -200

Task Reward
DoF position exp(−0.25∥d̂t − dt∥2) 32

DoF velocity exp(−0.25∥ˆ̇dt − ḋt∥22) 16
Body position exp(−0.5∥pt − p̂t∥22) 30

Body position VRpoints exp(−0.5∥preal
t − p̂real

t ∥22) 50
Body rotation exp(−0.1∥θt ⊖ θ̂t∥) 20
Body velocity exp(−10.0∥vt − v̂t∥2) 8

Body angular velocity exp(−0.01∥ωt − ω̂t∥2) 8

Reward Curriculum. We have modified the cumulative discounted reward expression to handle
multiple small rewards at each time step differently, depending on their sign. The revised formula
is given by: E

[∑T
t=1 γ

t−1
∑

i st,irt,i

]
where rt,i represents different reward functions at time t,

and st,i is the scaling factor for each reward, defined as: st,i =
{
scurrent if rt,i < 0

1 if rt,i ≥ 0
where scurrent

is the scaling factor. This scaling factor is adjusted dynamically: it is multiplied by 0.9999 when
the average episode length is less than 40, and multiplied by 1.0001 when it exceeds 120. The init
scurrent is set to 0.5, then the upper bound of this scaling factor is set to 1. This modification allows
our policy to progressively learn from simpler to more complex scenarios with higher penalties,
thereby reducing the difficulty for RL in exploring the optimal policy.

F Domain Randomizations

Detailed domain randomization setups are summarized in Table 16.
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Table 16: Here we describe the range of dynamics randomization for simulated dynamics randomization, ex-
ternal perturbation, and terrain, which are important for sim-to-real transfer, robustness, and generalizability.

Term Value
Dynamics Randomization

Friction U(0.2, 1.1)
Base CoM offset U(−0.1, 0.1)m

Link mass U(0.7, 1.3)× default kg
P Gain U(0.75, 1.25)× default
D Gain U(0.75, 1.25)× default

Torque RFI [65] 0.1× torque limit N ·m
Control delay U(20, 60)ms

Motion reference offset U([−0.02, 0.02], [−0.02, 0.02], [−0.1, 0.1])cm
External Perturbation

Push robot interval = 5s, vxy = 1m/s
Randomized Terrain

Terrain type flat, rough, low obstacles [20]

G Linear Velocity Estimation

The illustration of using the ZED camera VIO module and the comparison of VIO with neural state
estimators are shown in Figure 8. We train our neural velocity estimators using a supervised learning
approach. The process involves repeatedly deploying our policy in simulation with different motion
goals. In every environment step, we use the root linear velocity to supervise our velocity estimator.

(a) X-axis velocity (b) Y-axis velocity (c) Z-axis velocity (d) VIO setup

Figure 8: The illustration of using ZED camera VIO module, and the comparison of the velocity estimation of
VIO with neural state estimators.

H Ablation on Dataset Motion Distribution

The ablation study on motion data distribution is shown in Figure 9. The policy trained without
motion data augmentation is hard to stand still and make upper-body moves.

(b) w/o motion data augmentation(a) w/ motion data augmentation

Figure 9: The ablation of data augmentation.

I Additional Physical Teleoperation Results

Additional VR-based and RGB-based teleoperation demo are shown in Figure 10.
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(a) VR-based Teleoperation (a) RGB-based Teleoperation

Figure 10: More physical teleoperation showcases.

(f) Basket-Pick-Place

(e) Boxing

(d) Rock-Paper-Scissors

(c) Hammer-Catch

(b) Squat

(a) Catch-Release

Figure 11: OmniH2O-6 dataset.

J Dataset and Imitation Learning

As shown in Figure 11, we collected 6 LfD tasks’ dataset to enable the robot to autonomously
perform certain functions.
Catch-Release: Catch a red box and release it into a trash bin. This task has 13234 frames in total.
Squat: Squat when the robot sees a horizontal bar approaching that is lower than its head height.
This task has 8535 frames in total.
Hammer-Catch: Use right hand to catch a hammer in a box. This task has 12759 frames in total.
Rock-Paper-Scissors: When the robot sees the person opposite it makes one of the rock-paper-
scissors gestures, it should respond with the corresponding gesture that wins. This task has 9380
frames in total.
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Boxing: When you see a blue boxing target, throw a left punch; when you see a red one, throw a
right punch. This task has 11118 frames in total.
Basket-Pick-Place: Use your right hand to pick up the box and place it in the middle when the box
is on the right side, and use your left hand if the box is on the left side. If you pick up the box with
your right hand, place it on the left side using your left hand; if picked up with your left hand, place
it on the right side using your right hand. This task has 18436 frames in total.

The detailed performance of 4 tasks is documented in Table 17

Table 17: Quantitative LfD autonomous agents performance for 4 tasks.
Metrics Catch-Release Squat Hammer-Catch Rock-Paper-Scissors

(a) Ablation on Data size
25%data 50%data 100%data 25%data 50%data 100%data 25%data 50%data 100%data 25%data 50%data 100%data

MSE Loss 3.01E-3 3.04E-4 9.89E-5 1.25E-4 1.10E-4 7.07E-5 2.18E-2 1.56E-2 3.29E-4 2.72E-2 1.39E-2 1.60E-3
Succ rate 1/10 3/10 6/10 9/10 10/10 10/10 3/10 6/10 6/10 3/10 9/10 10/10

(b) Ablation on Sequence observation/action
Si-O-Si-A Se-O-Se-A Si-O-Se-A Si-O-Si-A Se-O-Se-A Si-O-Se-A Si-O-Si-A Se-O-Se-A Si-O-Se-A Si-O-Si-A Se-O-Se-A Si-O-Se-A

MSE Loss 2.52E-4 1.47E-4 9.89E-5 5.18E-5 9.60E-5 7.07E-5 2.22E-4 3.62E-4 3.29E-4 1.43E-3 3.36E-3 1.60E-3
Succ rate 3/10 7/10 6/10 10/10 10/10 10/10 5/10 9/10 6/10 10/10 9/10 10/10

(c) Ablation on BC/DDIM/DDPM
BC DP-DDIM DP-DDPM BC DP-DDIM DP-DDPM BC DP-DDIM DP-DDPM BC DP-DDIM DP-DDPM

MSE Loss 1.39E-3 4.79E-5 9.89E-5 6.24E-4 6.42E-5 7.07E-5 4.50E-3 3.41E-4 3.29E-4 1.46E-2 2.42E-3 1.60E-3
Succ rate 0/10 6/10 6/10 3/10 10/10 10/10 0/10 5/10 6/10 1/10 10/10 10/10

K Sim2real Training Hyperparameters

The hyperparameters for our RL/DAgger policy training are detailed in Table 18 below.

Table 18: Hyperparameters
Hyperparameters Values
Batch size 64
Discount factor (γ) 0.99
Learning rate 0.001
Clip param 0.2
Entropy coef 0.005
Max grad norm 0.2
Value loss coef 1
Entropy coef 0.005
Init noise std (RL) 1.0
Init noise std (DAgger) 0.001
Num learning epochs 5
MLP size [512, 256, 128]

L LfD Hyperparameters

In order to make the robot autonomous, we have developed a Learning from Demonstration (LfD)
approach utilizing a diffusion policy that learns from a dataset we collected. The default training
hyperparameters are shown below in Table 19.
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Table 19: Training Hyperparameters for the Lfd Training
Hyperparameter Default Value
Batch Size 32
Observation Horizon 1
Action Horizon 8
Prediction Horizon 16
Policy Dropout Rate 0.0
Dropout Rate (State Encoder) 0.0
Image Dropout Rate 0.0
Weight Decay 1E-5
Image Output Size 32
State Noise 0.0
Image Gaussian Noise 0.0
Image Masking Probability 0.0
Image Patch Size 16
Number of Diffusion Iterations 100

M GPT-4o Prompt Example

Here is the example prompt we use for Autonomous Boxing task:

You’re a humanoid robot equipped with a camera slightly tilted downward on your head, providing
a first-person perspective. I am assigning you a task: when a blue target appears in front of you,
extend and then retract your left fist. When a red target appears, do the same with your right fist.
If there is no target in front, remain stationary. I will provide you with three options each time:
move your left hand forward, move your right hand forward, or stay motionless. You should directly
respond with the corresponding options A, B, or C based on the current image. Note that, yourself
is also wearing blue left boxing glove and right red boxing glove, please do not recognize them as
the boxing target. Now, based on the current image, please provide me with the A, B, C answers.

For Autonomous Greetings with Human Task, our prompt is:

You are a humanoid robot equipped with a camera slightly tilted downward on your head, providing
a first-person perspective. I am assigning you a new task to respond to human gestures in front of
you. Remember, the person is standing facing you, so be mindful of their gestures. If the person
extends their right hand to shake hands with you, use your right hand to shake their right hand
(Option A). If the person opens both arms wide for a hug, open your arms wide to reciprocate the
hug (Option B). If you see the person waving his hand as a gesture to say goodbye, respond by
waving back (Option C). If no significant gestures are made, remain stationary (Option D). Respond
directly with the corresponding options A, B, C, or D based on the current image and observed
gestures. Directly reply with A, B, C, or D only, without any additional characters.

It is worth mentioning that we can use GPT-4 not only to choose motion primitive but also to directly
generate the motion goal. The following prompt exemplifies this process:

You are a humanoid robot equipped with a camera slightly tilted downward on your head, providing
a first-person perspective. I am assigning you a new task to respond to human gestures in front of
you. If the person extends his left hand for a handshake, extend your left hand to reciprocate. If
they extend their right hand, respond by extending your right hand. If the person opens both arms
wide for a hug, open your arms wide to reciprocate the hug. If no significant gestures are made,
remain stationary. Respond 6 numbers to represent the desired left and right hand 3D position with
respect to your root position. For example: [0.25, 0.2, 0.3, 0.15, -0.19, 0.27] means the desired
position of the left hand is 0.25m forward, 0.2m left, and 0.3m high compared to pelvis position, and
the desired position of the right hand is 0.15m forward, 0.19m right and 0.27m high compared to
pelvis position. The default stationary position should be (0.2, 0.2, 0.2, 0.2, -0.2, 0.2). Now please
respond the 6d array based on the image to respond to the right hand shaking, left hand shaking,
and hugging.
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